Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity.
نویسندگان
چکیده
Endogenous cannabinoids acting at CB(1) receptors stimulate appetite, and CB(1) antagonists show promise in the treatment of obesity. CB(1) (-/-) mice are resistant to diet-induced obesity even though their caloric intake is similar to that of wild-type mice, suggesting that endocannabinoids also regulate fat metabolism. Here, we investigated the possible role of endocannabinoids in the regulation of hepatic lipogenesis. Activation of CB(1) in mice increases the hepatic gene expression of the lipogenic transcription factor SREBP-1c and its targets acetyl-CoA carboxylase-1 and fatty acid synthase (FAS). Treatment with a CB(1) agonist also increases de novo fatty acid synthesis in the liver or in isolated hepatocytes, which express CB(1). High-fat diet increases hepatic levels of the endocannabinoid anandamide (arachidonoyl ethanolamide), CB(1) density, and basal rates of fatty acid synthesis, and the latter is reduced by CB(1) blockade. In the hypothalamus, where FAS inhibitors elicit anorexia, SREBP-1c and FAS expression are similarly affected by CB(1) ligands. We conclude that anandamide acting at hepatic CB(1) contributes to diet-induced obesity and that the FAS pathway may be a common molecular target for central appetitive and peripheral metabolic regulation.
منابع مشابه
Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice.
Diet-induced obesity is associated with fatty liver, insulin resistance, leptin resistance, and changes in plasma lipid profile. Endocannabinoids have been implicated in the development of these associated phenotypes, because mice deficient for the cannabinoid receptor CB1 (CB1-/-) do not display these changes in association with diet-induced obesity. The target tissues that mediate these effec...
متن کاملThe endocannabinoid system and the treatment of obesity.
The endocannabinoids are endogenous lipids capable of binding to both cannabinoid receptors (CB) CB1 and CB2. These receptors belong to the G protein-coupled family receptors and they were discovered while investigating the mode of action of ?(9)-tetrahydrocannabinol, a component of Cannabis sativa, to which they bind with high affinity. Among many other brain sites, CB1 is present in the hypot...
متن کاملSpecific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids.
UNLABELLED Nonalcoholic fatty liver disease, characterized by the accumulation of triacylglycerols (TGs) and other lipids in the liver, often accompanies obesity and is a risk factor for nonalcoholic steatohepatitis and fibrosis. To treat or prevent fatty liver, a thorough understanding of hepatic fatty acid and TG metabolism is crucial. To investigate the role of acyl CoA:diacylglycerol acyltr...
متن کاملMonounsaturated fatty acids generated via stearoyl CoA desaturase-1 are endogenous inhibitors of fatty acid amide hydrolase.
High-fat diet (HFD)-induced obesity and insulin resistance are associated with increased activity of the endocannabinoid/CB1 receptor (CB1R) system that promotes the hepatic expression of lipogenic genes, including stearoyl-CoA desaturase-1 (SCD1). Mice deficient in CB1R or SCD1 remain lean and insulin-sensitive on an HFD, suggesting a functional link between the two systems. The HFD-induced in...
متن کاملResistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function
BACKGROUND Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 115 5 شماره
صفحات -
تاریخ انتشار 2005